Aug. 04, 2025
Chemicals
The purpose of a lubricant is to reduce the amount of friction between two surfaces. In some cases, the base oil in the oil or grease may not have enough lubricity to perform this function sufficiently. The component metallurgy may also require special chemistry.
With competitive price and timely delivery, He Ao sincerely hope to be your supplier and partner.
For example, with worm gears, traditional extreme-pressure or anti-wear additives often are too chemically aggressive for the softer yellow metals. In this situation, friction modifiers are added to increase the oil’s lubricity.
Conversely, in an automatic transmission, one fluid is used to provide lubrication, hydraulic power transfer and many other functions. The clutches and friction bands within the transmission need friction to function properly. In this instance, friction modifiers are required to smooth the transition from one speed to another. Otherwise, the clutches and bands would “chatter,” causing damage and an irritating condition for the driver.
A number of compounds are used to modify a lubricant’s coefficient of friction. These are known collectively as friction modifiers. They are designed to change the amount of energy needed to cause two surfaces to move past one anoth er. The different types of friction modifiers are shown in the table above.
The purpose of a friction modifier varies based on the application. In a combustion engine, the goal is to lower the amount of friction, thereby gaining fuel economy. In clutches, automatic transmissions and industrial applications, the aim is not simply to control friction in order to maximize efficiency but to reduce slippage.
To a degree, this seems a bit counterintuitive, since a lubricant’s objective is to reduce friction and wear. However, there are many situations in which a certain amount of traction friction is required for equipment to operate properly. The friction modifiers used in these applications are not intended to increase or decrease friction but to act differently under specific shear conditions.
This essentially smooths the transition from a dynamic condition to a static condition, such as during a gear change in a transmission or the engagement of a clutch.
The vast majority of friction modifiers in use today are designed to reduce friction or increase lubricity for better fuel economy. Recently, the U.S. government increased fuel economy standards with the goal of raising the Corporate Average Fuel Economy (CAFE) to 54.5 miles per gallon. This number, which is double the current standard, is for gasoline engines only, but there is a similar push for diesel engines as well.
One way to achieve this goal would be to reduce the viscosity of the engine oils in use. The challenge is lowering the viscosity while maintaining a sufficient lubricant film to reduce wear and friction.
Great strides have been made in engineering to lower the friction generated in an engine. This has increased fuel economy. There have also been many advances in lubricant technology, including in the development of friction modifiers.
Friction modifiers are most efficient under boundary conditions or where metal-to-metal contact occurs. Organic friction modifiers have long, soluble chains and a polar head. The polar head attaches to the metal surfaces. The soluble chains line up beside each other much like fibers in a carpet.
The polar heads may be comprised of phosphoric or phosphonic acids, amines, amides or carboxylic acids. The soluble chains form dense mono layers or thick, reacted viscous layers. These layers shear easily and create a relatively slippery surface.
Mechanical types of friction modifiers form layers of platelets that align with one another, providing a reduction in friction. The most common of these is molybdenum dithiocarbamate (MoDTC).
These additives reduce friction by forming nano-sized single sheets dispersed in either a carbon or pyrite matrix. These nano-sized sheets are oriented in layers and slide against one another, reducing the generated friction.
Suggested reading:If you want to learn more, please visit our website HA107 Magnesium Alkyl Benzene Sulfonate.
Organic molybdenum compounds have been shown to work well in conjunction with zinc dialkyldithiophosphate (ZDDP). Used in engine oils for the better part of 80 years, ZDDP has been one of the most successful additives developed for oils.
It has many functions, such as serving as an antioxidant, corrosion inhibitor and anti-wear additive. These additives also have a polar head and an oil-soluble tail structure. They form relatively thick, sacrificial boundary films that are much softer than steel or iron surfaces.
It should be noted that not only do the polar heads of friction modifiers need to be able to attach to ferrous metals, but they also must be able to attach to the zinc layers that will be present due to the ZDDP.
These thick films formed by ZDDP are dependent on temperature and consist primarily of zinc, orthophosphate and polyphosphate glass, with an increasing proportion of polyphosphate chains closer to the surface.
As fuel economy standards become more stringent, more will be required of engine oils. While the technology for friction modifiers continues to evolve, the most effective way to improve fuel economy or energy consumption is to lower the viscosity of the lubricant.
However, you can only go so far before losing the hydrodynamic film and operating in either mixed-film lubrication or boundary lubrication. It is in these two lubrication regimes that the use of friction modifiers becomes critical for reducing friction.
Friction modifiers and mild anti-wear agents are polar molecules added to lubricants for the purpose of minimizing light surface contacts (sliding and rolling) that may occur in a given machine design. These are also called boundary lubrication additives.
Esters, natural and synthetic fatty acids as well as some solid materials such as graphite and molybdenum disulfide are used for these purposes. These molecules have a polar end (head) and an oil-soluble end (tail).
Once placed into service, the polar end of the molecule finds a metal surface and attaches itself. If you could see the orientation of the molecules on the surface, it would appear something like the fibers of a carpet, with each molecule stacked vertically beside the others.
As long as the frictional contact is light, these molecules provide a cushioning effect when one of the coated surfaces connects with another coated surface. If the contact is heavy, then the molecules are brushed off, eliminating any potential benefit of the additive.
When the machine designer anticipates more than light surface contact (from shock loading, for instance), then the designer would select a stronger type of friction modifier characterized as an anti-wear additive. Zinc dialkyldithiophosphate (ZDDP) is a common anti-wear agent. This type of additive literally reacts with the metal surface when the reaction energy (temperature) is high enough. The reaction layer provides sacrificial surface protection.
As the loading and metallic contact increase, the strength of the additive and reaction process increases. This leads to the use of sulfur-phosphorus based extreme pressure (EP) chemicals. The EP additives form organo-metallic salts on the loaded surfaces that serve as sacrificial films to protect against aggressive surface damage.
There are two main types of EP additives, those that are temperature-dependent, and those that are not. The most common temperature-dependent types include boron, chlorine, phosphorus and sulfur. They are activated by reacting with the metal surface when the temperatures are elevated due to the extreme pressure. The chemical reaction between the additive and metal surface is driven by the heat produced from friction.
If you are interested in sending in a Guest Blogger Submission,welcome to write for us!
All Comments ( 0 )